Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 1(9): 3514-3520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33313479

RESUMO

Silicon carbide nanoparticles (SiCNPs) are durable, physically resilient, chemically inert, and biocompatible. Silicon carbide particles smaller than 10 nm show photoluminescence due to quantum confinement effects and have been reported in imaging different cell lines. To further explore the potential of silicon carbide nanomaterials in cell imaging, we studied the photoluminescence and photoacoustic properties of three SiCNPs of approximately 30, 80, and 620 nm. All these SiCNPs show photoluminescence and photoacoustic signals; and the 620 nm silicon carbide nanoparticles (SiCNP620) show the highest photoluminescence and photoacoustic intensity. The SiCNP620 are biocompatible with good cell labeling capacity. They could image mesenchymal stem cells in vitro for more than 20 days via photoluminescence even when the cells were differentiated into adipocytes and osteocytes. The same SiCNP620 could also produce photoacoustic signals and track stem cells in vivo for over 14 days.

2.
Nat Protoc ; 13(11): 2714-2739, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30367169

RESUMO

There is an ongoing need to develop ultrasensitive nanomechanical instrumentation that has high spatial and force resolution, as well as an ability to operate in various biological environments. Here, we present a compact nanofiber optic force transducer (NOFT) with sub-piconewton force sensitivity and a nanoscale footprint that paves the way to the probing of complex mechanical phenomena inside biomolecular systems. The NOFT platform comprises a SnO2 nanofiber optic equipped with a thin, compressible polymer cladding layer studded with plasmonic nanoparticles (NPs). This combination allows angstrom-level movements of the NPs to be quantified by tracking the optical scattering of the NPs as they interact with the near-field of the fiber. The distance-dependent optical signals can be converted to force once the mechanical properties of the compressible cladding are fully characterized. In this protocol, the details of the synthesis, characterization, and calibration of the NOFT system are described. The overall protocol, from the synthesis of the nanofiber optic devices to acquisition of nanomechanical data, takes ~72 h.


Assuntos
Tecnologia de Fibra Óptica/métodos , Mecanotransdução Celular/fisiologia , Microscopia de Força Atômica/métodos , Nanofibras/química , Nanotecnologia/métodos , Animais , Animais Recém-Nascidos , Tecnologia de Fibra Óptica/instrumentação , Ouro/química , Helicobacter pylori/citologia , Helicobacter pylori/fisiologia , Camundongos , Microscopia de Força Atômica/instrumentação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Nanofibras/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanotecnologia/instrumentação , Polietilenoglicóis/química , Cultura Primária de Células , Som , Compostos de Estanho/química , Vibração
3.
ACS Appl Mater Interfaces ; 10(34): 28262-28268, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30113804

RESUMO

A novel layer-by-layer three-dimensional (3D) architecture allowing one to expand device fabrication in the vertical direction and integrating functional nanomaterials is presented by emulating civil engineering. The architecture uses SU-8 pillars as structural columns, which support multiple horizontal suspended thin films. The films then serve as platforms for the integration of nanomaterials and nanodevices. Multiple graphene layers suspended across SU-8 pillars with precise control on their vertical spacing are demonstrated. In addition to graphene, silicon nitride films that offer high strength yield and thickness control are also presented. Metallic microstructures, plasmonic nanostructures, semiconducting quantum dots, and monolayer graphene on the suspended films are achieved to prove the capability of integrating functional nanomaterials. This work provides the potential to integrate highly compact micro/nanoscale devices at different vertical levels with high surface density, which allows for more capabilities and functionalities in a single device.

4.
Sci Rep ; 8(1): 3157, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453347

RESUMO

The coffee-ring effect, ubiquitously present in the drying process of aqueous droplets, impedes the performance of a myriad of applications involving precipitation of particle suspensions in evaporating liquids on solid surfaces, such as liquid biopsy combinational analysis, microarray fabrication, and ink-jet printing, to name a few. We invented the methodology of laser-induced differential evaporation to remove the coffee-ring effect. Without any additives to the liquid or any morphology modifications of the solid surface the liquid rests on, we have eliminated the coffee-ring effect by engineering the liquid evaporation profile with a CO2 laser irradiating the apex of the droplets. The method of laser-induced differential evaporation transitions particle deposition patterns from coffee-ring patterns to central-peak patterns, bringing all particles (e.g. fluorescent double strand DNAs) in the droplet to a designated area of 100 µm diameter without leaving any stains outside. The technique also moves the drying process from the constant contact radius (CCR) mode to the constant contact angle (CCA) mode. Physical mechanisms of this method were experimentally studied by internal flow tracking and surface evaporation flux mapping, and theoretically investigated by development of an analytical model.

5.
Nat Photonics ; 11: 352-355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29576804

RESUMO

Ultrasensitive nanomechanical instruments, including the atomic force microscope (AFM)1-4 and optical and magnetic tweezers5-8, have helped shed new light on the complex mechanical environments of biological processes. However, it is difficult to scale down the size of these instruments due to their feedback mechanisms9, which, if overcome, would enable high-density nanomechanical probing inside materials. A variety of molecular force probes including mechanophores10, quantum dots11, fluorescent pairs12,13 and molecular rotors14-16 have been designed to measure intracellular stresses; however, fluorescence-based techniques can have short operating times due to photo-instability and it is still challenging to quantify the forces with high spatial and mechanical resolution. Here, we develop a compact nanofibre optic force transducer (NOFT) that utilizes strong near-field plasmon-dielectric interactions to measure local forces with a sensitivity of <200 fN. The NOFT system is tested by monitoring bacterial motion and heart-cell beating as well as detecting infrasound power in solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...